Counting Colored Random Triangulations

نویسنده

  • J. Bouttier
چکیده

We revisit the problem of enumeration of vertex-tricolored planar random triangulations solved in [Nucl. Phys. B 516 [FS] (1998) 543-587] in the light of recent combinatorial developments relating classical planar graph counting problems to the enumeration of decorated trees. We give a direct combinatorial derivation of the associated counting function, involving tricolored trees. This is generalized to arbitrary k-gonal tessellations with cyclic colorings and checked by use of matrix models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large N Limits in Tensor Models: Towards More Universality Classes of Colored Triangulations

We review an approach which aims at studying discrete (pseudo-)manifolds in dimension d ≥ 2 and called random tensor models. More specifically, we insist on generalizing the two-dimensional notion of p-angulations to higher dimensions. To do so, we consider families of triangulations built out of simplices with colored faces. Those simplices can be glued to form new building blocks, called bubb...

متن کامل

Counting Gluings of Octahedra

Three–dimensional colored triangulations are gluings of tetrahedra whose faces carry the colors 0, 1, 2, 3 and in which the attaching maps between tetrahedra are defined using the colors. This framework makes it possible to generalize the notion of two–dimensional 2p–angulations to three dimensions in a way which is suitable for combinatorics and enumeration. In particular, universality classes...

متن کامل

ar X iv : 0 90 1 . 42 99 v 1 [ m at h . C O ] 2 7 Ja n 20 09 TRIANGLE - FREE TRIANGULATIONS

The flip operation on colored inner-triangle-free triangulations of a convex polygon is studied. It is shown that the affine Weyl group e Cn acts transitively on these triangulations by colored flips, and that the resulting colored flip graph is closely related to a lower interval in the weak order on e Cn. Lattice properties of this order are then applied to compute the diameter.

متن کامل

Rectangular Matrix Models and Combinatorics of Colored Graphs

We present applications of rectangular matrix models to various combinatorial problems, among which the enumeration of face-bicolored graphs with prescribed vertex degrees, and vertex-tricolored triangulations. We also mention possible applications to Interaction-Round-a-Face and hard-particle statistical models defined on random lattices.

متن کامل

A Simple Sweep Line Algorithm for Counting Triangulations and Pseudo-triangulations

Let P ⊂ R be a set of n points. In [1] and [2] an algorithm for counting triangulations and pseudo-triangulations of P , respectively, is shown. Both algorithms are based on the divide-and-conquer paradigm, and both work by finding sub-structures on triangulations and pseudo-triangulations that allow the problems to be split. These sub-structures are called triangulation paths for triangulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002